Изучение эффекта холла. Эффект холла и его следствие Постулат лоренца эффект холла

Если металлическую пластинку, вдоль которой течет постоянный электрический ток, поместить в перпендикулярное к ней магнитное поле, то между гранями, параллельными направлениям тока и поля, возникает разность потенциалов (рис. 79.1). Это явление было обнаружено Холлом в 1879 г. и называется эффектом Холла или гальваномагнитным явлением.

Холловская разность потенциалов определяется выражением

Здесь - ширина пластинки, плотность тока, В - магнитная индукция поля, R - коэффициент пропорциональности, получивший название постоянной Холла.

Эффект Холла очень просто объясняется электронной теорией. В отсутствие магнитного поля ток в пластинке обусловливается электрическим полем (рис. 79.2). Эквипотенциальные поверхности этого поля образуют систему перпендикулярных к вектору плоскостей. Две из них изображены на рисунке сплошными прямыми линиями. Потенциал во всех точках каждой поверхности, а следовательно, и в точках 1 и 2 одинаков. Носители тока - электроны - имеют отрицательный заряд, поэтому скорость их упорядоченного движения и направлена противоположно вектору плотности тока

При включении магнитного поля каждый носитель оказывается под действием магнитной силы F, направленной вдоль стороны b пластинки и равной по модулю

В результате у электронов появляется составляющая скорости, направленная к верхней (на рисунке) грани пластинки. У этой грани образуется избыток отрицательных, соответственно у нижней грани - избыток положительных зарядов. Следовательно, возникает дополнительное поперечное электрическое поле напряженность этого поля достигает такого значения, что его действие на заряды будет уравновешивать силу (79.2), установится стационарное распределение зарядов в поперечном направлении. Соответствующее значение определяется условием: . Отсюда

Поле складывается с полем в результирующее поле Е. Эквипотенциальные поверхности перпендикулярны к вектору напряженности поля. Следовательно, они повернутся и займут положение, изображенное на рис. 79.2 пунктиром. Точки 1 и 2, которые прежде лежали на одной и той же эквипотенциальной поверхности, теперь имеют разные потенциалы.

Чтобы найти напряжение, возникающее между этими точками, нужно умножить расстояние между ними на напряженность

Выразим и через в соответствии с формулой . В результате получим

Последнее выражение совпадает с (79.1), если положить

Из (79.4) следует, что, измерив постоянную Холла, можно найти концентрацию носителей тока в данном металле (т. е. число носителей в единице объема).

Важной характеристикой вещества является подвижность в нем носителей тока. Подвижностью носителей тока называется средняя скорость, приобретаемая носителями при напряженности электрического поля, равной единице. Если в поле напряженности Е носители приобретают скорость и, то подвижность их равна

Подвижность можно связать с проводимостью о и концентрацией носителей п. Для этого разделим соотношение пей на напряженность поля Е. Приняв во внимание, что отношение к Е дает а, а отношение и к Е - подвижность, получим

Измерив постоянную Холла R и. проводимость а, можно по формулам (79.4) и (79.6) найти концентрацию и подвижность носителей тока в соответствующем образце.

Эффект Холла наблюдается не только в металлах, но и в полупроводниках, причем по знаку эффекта можно судить о принадлежности полупроводника к или -типу.

На рис. 79.3 сопоставлен эффект Холла для образцов с положительными и отрицательными носителями. Направление магнитной силы изменяется на противоположное как при изменении направления движения заряда, так и при изменении его знака. Следовательно, при одинаковом направлении тока и поля магнитная сила, действующая на положительные и отрицательные носители, имеет одинаковое направление. Поэтому в случае положительных носителей потенциал верхней (на рисунке) грани выше, чем нижней, а в случае отрицательных носителей - ниже. Таким образом, определив знак холловской разности потенциалов, можно установить знак носителей тока.

Любопытно, что у некоторых металлов знак соответствует положительным носителям тока. Объяснение этой аномалии дает квантовая теория.

Описание сути явления

Возникновение разности потенциалов в проводнике с током под воздействием магнитного поля называют эффектом Холла.

Электропроводность металлов зависит от концентрации электронов проводимости (n) и их подвижности (b). Данные величины являются весьма важными характеристиками металла и определяются опытным путем. Так, для измерения концентрации электроном используют эффект Холла. Рассмотрим проводник в виде прямоугольной пластины, в которой течет ток плотности $\overrightarrow{j.}$ Эквипотенциальными поверхностями внутри этой пластины являются плоскости, перпендикулярные направлению тока, следовательно, разность потенциалов на рис.1 между точками (1 и 2) равна нулю.

Если в металле создать магнитное поле, которое будет перпендикулярно току, то между точками 1 и 2 (рис.1) возникнет разность потенциалов, которая говорит о том, что при наличии магнитного поля эквипотенциальные поверхности в пластинке отклоняются от первоначального положения. В возникновении поперечной разности потенциалов заключается эффект Холла.

Сущность эффекта Холла

Эффект Холла является следствием существования силы Лоренца. На движущиеся в магнитном поле заряды действует сила Лоренца. Под ее действием электрон отклоняется от первоначального направления движения к одной из граней . В результате одна из граней проводника заряжается отрицательно, следовательно, другая становится положительно заряженной. Внутри металла появляется поперечное электрическое поле ($\overrightarrow{E_x}$).

Сущность этого явления заключена в том, что электропроводимость проводника во внешнем магнитном поле является тензорной величиной (не скаляром). Напряженность поперечного электрического поля, которое называют холловским, добавляется к напряженности электрического поля, которое вызывает ток в отсутствии магнитного поля. В результате $\overrightarrow{E}$ поля образует с плотностью тока угол, который называют углом Холла (направление вектора $\overrightarrow{E}$ и направление вектора $\overrightarrow{j\ }\ $ не совпадают). Связь напряжённости и плотности тока имеет вид:

где ${\sigma }_{ik}$ -- тензор электропроводимости. Эффект Холла относят к гальваномагнитным эффектам (эффектам, которые происходят в веществе под действие магнитного поля).

Эмпирически получено, что поперечная разность потенциалов (U), возникающая в эффекте Холла в слабых магнитных полях, может быть рассчитана как:

где $R=\frac{1}{nq_e}$- постоянная Холла, $q_e$ -- заряд электрона. Разность потенциалов измеряется, остальные величины в формуле (1) известны. Так находится концентрация зарядов. По знаку разности потенциалов определяют знак носителей тока.

Значение и применение эффекта Холла

Результаты измерений показали, что в металлах ток происходит как движение отрицательных зарядов (электронов). Концентрация их изменяется в пределах равенства концентрации атомов. То есть на один атом вещества приходится, в среднем, один свободный электрон. У металлов концентрация атомов около $n\sim {10}^{28}м^{-3}.$

Эффект Холла наблюдается не только в металлах, но и например, в полупроводниках. Опыты по изучению эффекта Холла в разных веществах показали, что он не всегда является результатом движения отрицательных зарядов. Если измерение разности потенциалов в эффекте Холла показывает, что движутся положительные заряды, то такой эффект называют аномальным.

Эффект Холла используют создавая так называемые датчики Холла. Они используются для определения параметров магнитных полей, нахождения местоположения объектов.

Данный эффект используют для изучения энергетического спектра носителей заряда в металлах и полупроводниках.

На эффекте Холла основано действие магнитных насосов для стимулирования циркуляции жидких металлов и других проводящих жидкостей и магнитодинамических генераторов энергии.

Для измерения постоянной Холла часто применяют компенсационный метод. Составляют цепь, которая изображена на рис.2. По пластинке А течет ток, к ней подведены два контакта 1 и 2. G -- гальванометр, K -- компенсатор, который создает напряжение противоположное напряжению Холла. Изменяют напряжение с помощью компенсатора добиваются того, чтобы ток через гальванометр обратился в ноль. Получают, что разность потенциалов на компенсаторе и напряжение холла совпали. Используя формулу (2) рассчитывают постоянную $R$. В справочных материалах иногда приводят две постоянных Холла расчетную и экспериментальную. Расхождения объясняются тем, что в расчетах предполагается, что число электронов проводимости в точности равно количеству валентных электронов. $R$ может быть как положительной так и отрицательной. Постоянная Холла считается положительной, если векторы $\overrightarrow{j},\ \overrightarrow{B},\ {\overrightarrow{E}}_x$ образуют правовинтовую систему.

Пример 1

Задание: Рассчитайте холловскую разность потенциалов для золотой ленты толщины $l={10}^{-4}$ м, по которой течет ток 10 А. Магнитное поле $1Тл.$

Для решения задачи используем формулу:

где экспериментальное значение постоянной Холла $R_{Au}$=-0,7$\cdot {10}^{-11}\frac{м^3}{Кл}$. Плотность тока ($j$) найдем как:

Подставим (1.2) в (1.1), получим:

Проведем вычисления:

Ответ: Холловская разность потенциалов весьма мала, и составляет $U=7,4\cdot {10}^{-6}В.$

Пример 2

Задание: Получите выражение для постоянной Холла, считая, что проводник с током, помещен в магнитное поле. Следует допустить, что электрон движется равномерно.

Сила Лоренца, которая действует на электрон в магнитном поле, движущийся со скорость $\overrightarrow{v}$ равна:

\[\overrightarrow{F}=q_e\overrightarrow{E}+q_e\left[\overrightarrow{v}\overrightarrow{B}\right]\left(2.1\right).\]

В равновесии $\overrightarrow{F}=0$ тогда можно записать, что:

\\to \overrightarrow{E}=-\left[\overrightarrow{v}\overrightarrow{B}\right]\left(2.2\right).\]

Плотность тока в проводнике можно выразить как:

\[\overrightarrow{j}=-q_en\overrightarrow{v}\left(2.3\right),\]

где $n$ -- концентрация электронов. Из $\left(2.3\right)$ выразим скорость:

\[\overrightarrow{v}=-\frac{\overrightarrow{j}}{nq_e}\left(2.4\right).\]

Кроме того разность потенциалов между точками 1- 2 (рис.1) равна:

Подставим в (2.5) выражение для напряженности (2.2) и скорость из (2.4), получим:

\=\frac{d}{nq_e}\left[\overrightarrow{j}\overrightarrow{B}\right]\left(2.6\right).\]

Выражение для разности потенциалов в эффекте Холла имеет выражение:

Получаем, что постоянная Холла равна:

Ответ: $R=\frac{1}{nq_e}.$

Эффект Холла был открыт в 1879 г. американским ученым Эдвином Гербертом Холлом. Его сущность состоит в следующем (см. рисунок). Если через проводящую пластинку пропускать ток, а перпендикулярно пластинке направить магнитное поле, то в направлении поперечном току (и направлению магнитного поля) на пластинке появится напряжение: Uh = (RhHlsinw)/d, где Rh - коэффициент Холла, зависящий от материала проводника; Н - напряженность магнитного поля; I - ток в проводнике; w - угол между направлением тока и вектором индукции магнитного поля (если w = 90°, sinw = 1); d - толщина материала.

Благодаря тому, что выходной эффект определяется произведением двух величин (Н и I), датчики Холла имеют весьма широкое применение. В таблице приведены коэффициенты Холла для различных металлов и сплавов. Обозначения: Т - температура; В - магнитный поток; Rh - коэффициент Холла в единицах м3 /Кл.

Бесконтактные клавишные переключатели на основе эффекта Холла применялись за рубежом довольно широко уже с начала 70-х годов. Достоинства этого переключателя - высокая надежность и долговечность, малые габариты, а недостатки - постоянное потребление энергии и сравнительно высокая стоимость.

Принцип действия генератора Холла

Датчик Холла имеет щелевую конструкцию. С одной стороны щели расположен полупроводник, по которому при включенном зажигании протекает ток, а с другой стороны - постоянный магнит.

В магнитном поле на движущиеся электроны воздействует сила. Вектор силы перпендикулярен направлению, как магнитной так и электрической составляющих поля.

Если внести в магнитное поле с индукцией В полупроводниковую пластинку (например, из арсенида индия или антимонида индия), через которую протекает электрический ток, то на боковых сторонах, перпендикулярно направлению тока, возникает разность потенциалов. Напряжение Холла (ЭДС Холла) пропорционально току и магнитной индукции.

Между пластинкой и магнитом имеется зазор. В зазоре датчика находится стальной экран. Когда в зазоре нет экрана, то на пластинку полупроводника действует магнитное поле и с нее снимается разность потенциалов. Если же в зазоре находится экран, то магнитные силовые линии замыкаются через экран и на пластинку не действует, в этом случае разность потенциалов на пластинке не возникает.

Интегральная микросхема преобразует разность потенциалов, создающуюся на пластинке, в отрицательные импульсы напряжения определенной величины на выходе датчика. Когда экран находится в зазоре датчика, то на его выходе будет напряжение, если же в зазоре датчика экрана нет, то напряжение на выходе датчика близкое к нулю.

Об эффекте Холла написано много, этот эффект интенсивно используется в технике, но ученые продолжают его исследовать. В 1980 г. немецкий физик Клаус фон Клитцунг изучал работу эффекта Холла при сверхнизких температурах. В тонкой пластинке полупроводника фон Клитцунг плавно изменял напряженность магнитного поля и обнаружил, что сопротивление Холла изменяется не плавно, а скачками. Величина скачка не зависила от свойств материала, а являлась комбинацией фундаментальных физических констант, деленной на постоянное число. Получалось, что законы квантовой механики каким-то образом изменяли природу эффекта Холла. Это явление было названо интегральным квантовым эффектом Холла. За это открытие фон Клитцунг получил Нобелевскую премию по физике в 1985 г.

Два года спустя после открытия фон Клитцунга в лаборатории компании Bell Telephone (той самой, в которой был открыт транзистор) сотрудники Стормер и Тсуи изучали квантовый эффект Холла, используя исключительно чистый образец арсенида галлия большого размера, изготовленный в этой же лаборатории. Образец имел настолько высокую степень чистоты, что электроны проходили его из конца в конец, не встречая препятствий. Эксперимент Стормера и Тсуи проходил при гораздо более низкой температуре (почти абсолютный нуль) и с более мощными магнитными полями, чем в эксперименте фон Клитцунга (в миллион раз больше, чем ).

К своему большому удивлению Стормер и Тсуи обнаружили скачок в сопротивлении Холла в три раза больший, чем у фон Клитцунга. Затем они обнаружили еще большие скачки. Получалась та же комбинация физических постоянных, но деленная не на целое, а на дробное число. Заряд электрона у физиков считается константой, не делимой на части. А в этом эксперименте как бы участвовали частицы с дробными зарядами. Эффект был назван дробным квантовым эффектом Холла.

Год спустя после этого открытия сотрудник лаборатории Ла-флин дал теоретическое объяснение эффекта. Он заявил, что комбинация сверхнизкой температуры и мощного магнитного поля заставляет электроны образовывать несжимаемую квантовую жидкость. Но рисунке с помощью компьютерной графики показан поток электронов (шары), протыкающих плоскость. Неровности плоскости представляют распределение заряда одного из электронов в присутствии магнитного поля и заряда других электронов. Если электрон добавляется к квантовой жидкости, то образуется некоторое количество квазичастиц с дробным зарядом (на рисунке это показано как набор стрелок у каждого электрона).
В 1998 г. Хорст Стормер, Даниэль Тсуи и Роберт Лафлин были удостоены Нобелевской премии по физике. В настоящее время Х.Стормер - профессор физики Колумбийского университета, Д.Тсуи - профессор Принстонского университета, Р.Лафлин - профессор Стенфордского университета.

Металл (сплав)

Алюминий

Морганец-сурьмо

Хром-теллур

Эффект Холла. Основная сущность эффекта Холла заключается в том, что в проводнике с током плотностью j , помещенным в магнитное поле B , возникает электрическое поле в направлении перпендикулярном j и B :

R называется постоянной Холла и служит основной характеристикой эффекта. Эффект был открыт Э.Г. Холлом в 1879 году в тонких пластинках золота и является одним из наиболее важных гальваномагнитных явлений.

Холл Эдвин Герберт, 1855-1938, американский физик. Родился в Гореми. В 1880 году окончил университет Дж.Гопкинса. В 1881-1921 годах работал в Гарвардском университете, с 1895 года - профессор. Член Национальной АН США с 1911 года. Исследования термоэлектричества, электро- и теплопроводности металлов, термомагнитных и гальваномагнитных явлений.

Соотношение (1) описывает эффект Холла в изотропном (например, поликристаллическом) проводнике в слабом магнитном поле. Для наблюдения эффекта прямоугольные пластины из исследуемого вещества с длиной значительно больше ширины b и толщины d, вдоль которых течет ток I=jbd , помещают в магнитное поле H , перпендикулярное плоскости пластинки. На середине боковых граней перпендикулярно току расположены электроды, между которыми измеряется э.д.с. Холла: V Н =E Н b = RHI / d .

Рис. 1

Эффект Холла объясняется взаимодействием носителей заряда (электронов проводимости и дырок) с магнитным полем. В магнитном поле на заряженные частицы действует сила Лоренца: F = e , где v=j /en - средняя скорость направленного движения носителей в электрическом поле, n - концентрация носителей, e - их заряд. Под действием этой силы частицы отклоняются в направлении, перпендикулярном B и j . В результате на боковой грани пластины происходит накопление зарядов и возникает электрическое поле Холла E Н , которое, в свою очередь, действуя на заряды, уравновешивает силу Лоренца. При равновесии e E Н = e Bv, откуда:

Отметим, что в формулу не входят никакие другие характеристики электрона, например, его масса, или какие - нибудь другие свойства материала - только электронная плотность. Самое замечательное, что R не зависит от формы образца. То есть даже некоторое количество дырок, просверленных в образце, не измени бы результат. Если электрические контакты не нарушены, то перфорированная металлическая пластина имеет такое же холловское сопротивление, что и целая пластина.

Знак R совпадает со знаком носителей заряда. Для металлов, у которых n~10ІІ см -3 , R~10 -3 см 3 /Кл; у полупроводников R~10 5 см 3 /Кл.

Для анизотропных кристаллов R=r /en, где r - величина, близкая к единице, зависящая от направления магнитного поля относительно кристаллографических осей. В области сильных магнитных полей r= 1.

В полупроводниках в электропроводности участвуют одновременно электроны проводимости и дырки. При этом постоянная Холла выражается через парциальные проводимости электронов у e и дырок у д и их концентрации n e и n д .

Для слабых полей:

Для сильных полей:

Критерием сильного поля является: щ с ф »1, где щ с = e B /m -циклотронная частота. При n e = n д для всех значений B:

Знак R соответствует основным носителям.

Для металлов величина R зависит от зонной структуры (формы Ферми поверхности). Для замкнутых поверхностей Ферми и в сильных магнитных полях постоянная Холла изотропна, а выражение для R совпадает с ранее полученным: R=1/en. Для открытых поверхностей Ферми R- тензор. Однако, если направление магнитного поля относительно кристаллографических осей выбрано так, что не возникает открытых сечений поверхности Ферми, то выражение для R также совпадает с соотношением (2).

В ферромагнетиках электроны подвергаются совместному действию внешнего магнитного поля и магнитного поля доменов. Это приводит к особому ферромагнитному эффекту Холла. Экспериментально найдено, что E Н = (RB + R 1 M) j, где R - обыкновенная, а R 1 - аномальная постоянная Холла, M - величина намагниченности.

Поскольку эффект Холла не зависит от каких - либо внутренних или внешних характеристик, он стал стандартным методом определения плотности свободных электронов в проводниках. В частности, электронная плотность полупроводников, которая может сильно меняться в зависимости от способа приготовления образца, измеряется при помощи эффекта Холла.

Эффект Холла - один из наиболее продуктивных методов изучения энергетического спектра носителей заряда в металлах и полупроводниках. Зная R можно определить знак носителей заряда и оценить их концентрацию, что позволяет сделать заключение о количестве примесей в полупроводниках. Линейная зависимость R от напряженности магнитного поля используется для измерения H.

Датчики Холла представляют собой тонкую прямоугольную пластинку (площадью несколько ммІ ) или пленку, изготовленную из полупроводника (Si, Ge, InSb, InAs). Датчик имеет 4 электрода для подвода тока и съема эдс Холла. Чтобы избежать механических повреждений пластинку монтируют (а пленку напыляют в вакууме) на прочной подложке из диэлектрика (керамики). Для получения наибольшего эффекта толщина пластинки (пленки) делается возможно меньшей. Датчики Холла применяют для бесконтактного измерения магнитных полей - от 10 -6 до 10 5 Э. При измерении слабых магнитных полей датчики Холла монтируются в зазоре ферро- или ферримагнитного стержня (концентратора), что позволяет значительно повысить чувствительность датчика. Так как в полупроводниках концентрация носителей зарядов, а следовательно и постоянная Холла, зависит от температуры датчики для прецизионных измерений необходимо термостабилизировать, либо применять сильно легированные полупроводники (последнее снижает чувствительность датчика).

При помощи датчиков Холла можно измерять любую физическую величину, которая связана с магнитным полем, в частности, силу тока. На основе датчиков Холла созданы бесконтактные амперметры на токи до 100 кА. Датчики Холла применяют также в аналоговых перемножающих устройствах. При этом токи, пропорциональные перемножаемым величинам, используются один для питания датчика, другой для создания магнитного поля, а эдс Холла пропорциональна произведению этих величин. Кроме того, датчики Холла применяют в измерителях линейных и угловых перемещений, а также в измерителях градиента магнитного поля, магнитного потока и мощности электрических машин, в бесконтактных преобразователях постоянного тока в переменный и, наконец, в воспроизводящих головках систем записи.

Применение датчиков на основе эффекта Холла включает в себя выбор магнитной системы и сенсора Холла с соответствующими рабочими характеристиками. Эти два компонента объединяются в единую систему, которая будет удовлетворять данному конкретному применению. Разработано большое количество различных устройств, которые объединяют сенсор и магнитную систему в едином корпусе. Поскольку характеристики такого устройства предопределены, то его применение не требует разработки магнита или сенсора, а состоит в электрическом или механическом сопряжении устройства.

Ползунковый позиционный датчик Ползунковый датчик состоит из системы магнита и датчика Холла с цифровым выходом, как это показано на рисунке 1. Магнит и датчик Холла жестко установлены в одном корпусе из немагнитного материала. Между датчиком и магнитом имеется зазор, в который может проходить железный экран. Датчик Холла детектирует наличие или отсутствие экрана в зазоре.


Возможен другой вариант базовой конструкции, в котором магнит добавлен и со стороны датчика, что уменьшает магнитное сопротивление в зазоре. Магнитные линии, показанные на рисунке стрелками от северного полюса к южному, проходят зазор в датчике. В результате датчик нормально включен. Магнитный поток изменяется, когда металлический экран вводится в зазор. Этот экран замыкает на себя (шунтирует) магнитный поток, поступающий в сенсор. В результате датчик выключается, когда металлический ползунок (экран) введен в зазор и перерывает магнитный поток.

Зависимости магнитного потока от расположения экрана в зазоре показывают, каким образом магнитное поле, детектируемое сенсором Холла, изменяется при прохождении экрана в зазоре. Полагаем, что сенсор имеет две точки, определяющие его состояние - работы и отключения. Когда экран движется слева направо, сенсор находится в состоянии «включено» до тех пор, пока передний край экрана не достигнет точки «b». По достижении этой точки (определенной как «левое выключение») сенсор будет выключен. Если движение экрана продолжается, сенсор будет оставаться в положении «выключено» пока задний конец экрана не достигнет точки «d». По достижении этой точки (определенной как «правое включение») сенсор опять включается. Общее расстояние, проходимое экраном пока сенсор находится в состоянии «выключено» равно расстоянию между точками «b» и «d» плюс ширина экрана.


Если экран движется справа налево, то сенсор будет включен пока передний конец экрана не достигнет точки «с» (определенной как «правое выключение»). Сенсор находится в состоянии «выключено» до тех пор, пока задний конец экрана не достигнет точки «а» (определенной как «левое включение»). Общее расстояние, проходимое экраном пока сенсор находится в состоянии «выключено» равно расстоянию между точками «с» и «а» плюс ширина экрана.

Во многих случаях экран состоит из нескольких «зубцов». Расстояние между отдельными зубцами определяется как «окно». На рис.2 показан экран с двумя зубцами и одним окном. Если этот экран проходит через зазор, то расстояние, в течение которого сенсор находится в состоянии «выключено», равно ширине зуба плюс расстояние между точками «b» и «d», т.е. такое же, как показано на рис.1. Общее расстояние, которое проходит экран при состоянии сенсора «включено», равно ширине окна минус расстояние между точками «b» и «d» или «с» и «а» в зависимости от направления движения.

Параметры ползунковых позиционных датчиков описываются в геометрических размерах экрана и геометрических размерах магнитной системы. Геометрические размеры магнитной системы есть расстояние между правыми и левыми точками включения и выключения, как это описано ранее. Геометрический размеры экрана есть размеры окон и зубцов, обеспечивающие работу сенсора.

Типичные размеры магнитной системы приведены в таблице 1 (расстояние в дюймах относительно опорной точки).

Таблица 1

Типичные параметры экрана приведены в таблице 2 (в дюймах).

Таблица 2

Линейные экраны используются для фиксации линейного перемещения деталей, для индикации положения деталей с круговым перемещением используются дисковые экраны. Следует отметить, что размеры зубцов и окон дискового экрана не одинаковые по внутренней и внешней окружностям, ограничивающим их размеры. Поэтому необходимо тщательно следить за выполнением требований по среднему, минимальному и максимальному размеру зубцов и окон в соответствии с требованиями магнитной системы.

Цифровые токовые датчики . Быстродействующие, автоматически переустанавливаемые токовые датчики могут быть изготовлены с использованием цифрового выхода датчика Холла. Токовый датчик включает электромагнит и сенсор Холла, объединенные в одном корпусе, как это показано на рисунке. Ток, проходящий по катушке электромагнита, генерирует магнитное поле, которое детектируется датчиком Холла. Внешний сигнал изменяет состояние датчика, когда его величина превышает некоторый пороговый уровень. Этот внешний сигнал может использоваться для сигнала тревоги или непосредственно контроля его величины.

Работа токового датчика основана на использовании электромагнита для генерации магнитного поля. Магнитное поле генерируется вокруг проводника при прохождении по нему тока. Плотность магнитного потока пропорциональна величине тока по проводнику. Если проводник выполнен в виде спиральной катушки, то магнитное поле соседних витков складывается. В результате магнитное поле спиральной катушки прямо пропорционально произведению количества витков в катушке и току через катушку.

Проводник, катушка или их комбинация вместе с магнитным материалом представляет собой электромагнит. Магниты предназначены для концентрации магнитного поля в узком зазоре, где и располагается датчик Холла.

Датчик Холла с цифровым выходом работает, как показано на рисунке 3. Датчик находится в состоянии «включено», когда ток превышает пороговое значение и выключается, когда ток падает ниже значения. В идеальном случае датчик включается в тот момент, когда ток достигает значения. Однако, если ток изменяется быстро (с крутым фронтом), возникает вихревой ток (ток, наведенный быстрым изменением плотности магнитного поля). В свою очередь этот ток генерирует магнитное поле, противоположное по отношению к полю от основного тока, что понижает общую плотность магнитного поля, измеряемого датчиком. В результате имеет место задержка между временем достижения током порогового значения и временем включения датчика.

Типовые характеристики цифровых токовых датчиков Холла приведены в таблице 3. Для датчика определяется ток включения и ток выключения. Рабочий ток датчика должен превышать напряжение включения. Сопротивление катушки используется для вычисления падения напряжения (вносимых потерь) и мощности, рассеиваемой на катушке. Температурная стабильность используется для вычисления изменения тока включения и выключения датчика в зависимости от рабочей температуры.

Таблица 3.

Линейные токовые датчики. Токовые датчики с аналоговым выходом могут быть реализованы с использованием линейных сенсоров Холла. Токовый датчик содержит кольцо из феррита или кремнистой стали и микросхему датчика Холла, объединенных в единый корпус. Ток, проходящий через проводник, генерирует магнитное поле. Магнитное кольцо концентрирует магнитный поток в области микросхемы датчика Холла. Линейная зависимость и изолированность от измеряемого тока делает линейный токовый датчик идеальной схемой для контроля двигателя.

Выход интегральной схемы датчика Холла пропорционален току в проводнике, выходной линейный сигнал точно воспроизводит форму измеряемого тока.


Линейный токовый датчик определяет величину магнитного поля, создаваемого протекающим током, но не сам ток. Измеряемый ток проходит кольцо, концентрирующее магнитный поток в области датчика Холла. Форма напряжения на выходе датчика Холла соответствует форме измеряемого тока. Конструктивное исполнение обеспечивает изоляцию датчика и гарантирует нормальную работу при большом токе или высоком напряжении.

Датчик Холла есть устройство измерения отношения. Выходное напряжение датчика будет равно половине напряжения питания, когда измеряемый в проводнике ток равен нулю. Диапазон выходного напряжения составляет от 25% до 75% от напряжения питания (). Когда ток протекает в одном направлении, выходное напряжение повышается от до. Когда ток протекает в противоположном направлении, выходное напряжение понижается до.

Токовые датчики следует использовать в области значений, близких к максимальным, т.к. это уменьшает влияние шумов. Для повышения измеряемого тока до уровня, близкого к максимальному, необходимо увеличивать число витков проводника вокруг сердечника. Например, датчик на 50А пикового значения тока может быть использован для измерения пикового тока через проводник величиной до 10А, если проводник имеет пять витков вокруг сердечника. Изменение расположения проводника на сердечнике не вносит большой ошибки в измерения. Чувствительность датчика также повышается с увеличением количества витков проводника вокруг сердечника.

Как и любой датчик Холла, токовый датчик зависит от температуры. Линейный датчик имеет зависимость от температуры среднего выходного напряжения и чувствительности. Типичным для датчиков является величина температурного коэффициента сдвига среднего напряжения от ± 0.02 до ± 0.05 %/ о С, температурный коэффициент чувствительности примерно ± 0.03 %/ о С.

Сердечник обычно изготавливается из феррита или кремниевой стали. Материал выбирается исходя из параметров насыщения. При некотором значении тока материал сердечника не может поддерживать дальнейшее увеличение магнитного потока и наступает насыщение. Когда это происходит, датчик не обеспечивает повышение выходного напряжения при увеличении напряженности магнитного поля. На точку насыщения влияет величина воздушного зазора в сердечнике. Изменяя величину этого зазора, можно изменять величину тока, которая приводит к насыщению.

Типичные характеристики линейного токового датчика Холла приведены в таблице 4.

Таблица 4

Датчики с замкнутой петлей тока. Одним из вариантов датчиков на основе эффекта Холла являются датчики с замкнутой петлей тока. Датчики с замкнутой петлей усиливают выход датчика Холла для управления током, протекающим через (дополнительную) обмотку проводника вокруг сердечника. Магнитное поле, создаваемое (дополнительным) проводником, направлено в противоположную сторону по сравнению с полем, создаваемым в проводнике первичным измеряемым током. Эффект обратной связи приводит к тому, что суммарное магнитное поле в сердечнике равно нулю, поэтому этот вид датчиков также называется токовыми датчиками с нулевым балансом. Вторичный ток в катушке является зеркальным по отношению к измеряемому току, уменьшенному на количество витков в катушке. Вторичный ток, проходя через нагрузочный резистор, создает выходное напряжение датчика.

Датчики с замкнутой петлей тока имеют некоторые очень интересные характеристики. Обратная связь имеет очень малое время реакции, типично менее одной микросекунды, полоса пропускания петли около 100 КГц. Эти датчики отличаются высокой точностью с линейностью лучше 0.1 %. Все эти параметры превышают те, которые могут быть получены в обычных датчиках с разомкнутой петлей. Однако более высокая цена, большие размеры и повышенный ток потребления датчиков с замкнутой петлей должен быть оправдан соответствующей областью применения, где необходима высокая точность и скорость.


Датчик с замкнутой петлей тока включает несколько дополнительных компонент по сравнению с обыкновенным линейным датчиком. Электронная схема обратной связи (рис.5) содержит операционный усилитель и катушку обратной связи, которые являются главными дополнительными компонентами. Первичный измеряемый ток, протекающий по проводнику внутри сердечника, создает в нем магнитный поток, как и в датчике с открытой петлей. Сердечник собран из тонких, плотно упакованных металлических пластин, что повышает рабочую частоту устройства. Датчик Холла, расположенный в зазоре сердечника, измеряет величину магнитного потока в сердечнике. Выходное напряжение датчика, как и в датчике с разомкнутой петлей, пропорционально величине тока. Выходной сигнал датчика Холла усиливается в схеме обратной связи. Выходной ток усилителя в схеме обратной связи создает в катушке обратной связи вторичное магнитное поле. Величина этого вторичного магнитного поля равна произведению тока на число витков вторичной катушки. Магнитное поле вторичной катушки компенсирует магнитное поле первичного тока, так что суммарное поле равно нулю.

Выходным сигналом датчика Холла с замкнутой петлей является вторичный ток. Когда этот ток проходит нагрузочный (измерительный) резистор, на последнем формируется выходное напряжение, пропорциональное первичному измеряемому току. Постоянный, переменный или импульсный ток могут быть одинаково измерены, причем с сохранением формы первичного тока. Величина нагрузочного (измерительного) резистора в наибольшей степени влияем на максимальную величину тока, который может быть измерен.

Выходной ток не равен точно нулю при нулевом входном токе. Причиной этого является небольшой ток сдвига операционного усилителя и датчика Холла. Типичная величина ошибки равна ± 0.2мА. Случайные искажения могут иметь место, при измерении большой величины постоянного тока, когда датчик находится в нелинейной области. Дрейф величины тока возможен из-за дрейфа операционного усилителя и датчика Холла с температурой на величину примерно ± 0.35мА.

Механические переключатели с датчиками Холла . Механические (плунжерные) переключатели объединяют удобство механического устройства с надежностью твердотельных электронных устройств. Эти переключатели состоят из магнита, соединенного с подвижной частью (плунжером) и датчика Холла, жестко укрепленного на корпусе. С точки зрения пользователя твердотельный ключ имеет те же самые характеристики, что и обычный механический ключ мгновенного действия. Отличительные черты твердотельного устройства - высокая надежность, бесконтактность действия, совместимость с микропроцессорами.

Магнит, размещенный на плунжере, активирует цифровой выход датчика Холла. В нормальном состоянии, когда магнит находится вдали от корпуса, датчик находится в положении «выключено». При нажатии на плунжер магнит приближается к датчику и последний переходит в состояние «включено». Такой тип ключа определяется как нормально выключенный. Нормально включенный ключ получается при замене полюсов магнитной пары.

Механические переключатели с датчиками Холла имеют следующие основные характеристики:

* Максимальное расстояние, которое проходит плунжер из свободного состояния до рабочей точки (2 мм).

* Положение плунжера по отношению к фиксированной точке, где датчик изменяет свое состояние (14 мм).

* Минимальное расстояние, которое плунжер может пройти после рабочей точки (1 мм).

* Максимальное расстояние между точками включения и выключения (?0.3 мм).

Типичный пример программируемых датчиков Холла представляют HAL-805 - датчики магнитного поля с линейным выходным сигналом, основанные на эффекте Холла. Микросхемы производятся по субмикронной CMOS технологии и могут быть использованы для измерения угла и расстояния с помощью внешнего вращающегося или подвижного магнита. Основные характеристики датчиков - интенсивность магнитного поля, чувствительность, выходное напряжение покоя (B = 0,1 мТ), диапазон выходного напряжения - программируются в энергонезависимой памяти. Датчики имеют радиометрический выход, т.е. выходное напряжение пропорционально магнитному полю и напряжению питания.

В конструкцию датчиков входят: элемент Холла со схемой термокомпенсации и компенсацией сдвига, аналого-цифровой преобразователь, цифровой обработчик сигналов, цифро-аналоговый преобразователь с драйвером выхода, EEPROM память с функциями резервирования и блокировки данных калибровки, последовательный интерфейс для программирования EEPROM памяти, защитные компоненты на всех выводах. Большие преимущества дает встроенный цифровой процессор, благодаря которому на точность измерений не влияет аналоговый сдвиг, температурные изменения и механические удары. Калибровка индивидуальных характеристик датчиков и программирование EEPROM осуществляется через компьютерное программное обеспечение Micronas.

Датчики HAL-805 разработаны для тяжелых условий работы в промышленном оборудовании и автомобильной электронике, работают от источника питания 5 В в диапазоне рабочих температур от -40 до 150°C. Датчики корпусируются в стандартные промышленные корпуса ТО-92.

Архитектура датчиков HAL-805 - монолитные микросхемы, которые генерируют выходное напряжение, пропорциональное напряжению питания и приложенному к маркированной стороне корпуса магнитному полю. Микросхемы чувствительны как к северному, так и к южному полюсу магнита. Напряжение Холла конвертируется в цифровой сигнал, обрабатывается цифровым процессором в соответствии с установками EEPROM регистров, конвертируется в аналоговый сигнал, пропорциональный напряжению питания и стабилизируется на push-pull выводе транзистора.

Настройки регистра LOCK не позволяют постоянно программировать EEPROM память. Этот регистр не имеет возможности сброса данных. Пока регистр LOCK не записан, выходные характеристики датчиков можно программировать с помощью EEPROM регистров. Доступ к микросхеме осуществляется модуляцией напряжения питания. В диапазоне питания от 4.5 до 5.5 В датчик генерирует линейный выходной сигнал. После определения команды, датчик считывает или записывает в память данные и выдает цифровой сигнал на выходном контакте. В процессе передачи данных аналоговый сигнал выключается.

Основные характеристики датчиков: высокопрецизионный линейный датчик Холла с радиометрическим выходными сигналом и цифровой обработкой данных; возможность программирования основных рабочих параметров датчиков в энергонезависимой EEPROM памяти с функцией резервирования и блокировки; определение разомкнутой цепи (определение земли и разрыва линии питания); программирования конкретного датчика в ряду параллельно подключенных к источнику питания датчиков (выбор осуществляется через выходной контакт); программирование температурных характеристик для работы с любыми традиционными магнитными материалами; программирование защелки; программирование через модуляцию напряжения питания; диапазон рабочих температур -40…150°С; питание 4.5…5.5 В с возможностью расширения до 8.5 В; работа со статичными и динамичными магнитными полями до 2 кГц; защита от перенапряжения и обратного напряжения на всех выводах;магнитные рабочие характеристики датчиков не зависят от механических стрессов; Push-pull выход с защитой от короткого замыкания; защита от электромагнитных полей и статики

Возможная область применения: бесконтактные потенциометры, датчики угла, измерители расстояния, измерители тока и магнитного поля.

Хотя исследования эффекта Холла в металлах, полупроводниках и ферромагнетиках c момента его открытия велись достаточно интенсивно, принципиально новые фундаментальные результаты были получены в начале 80-х годов ХХ века. Как следствие, за тринадцать лет Нобелевская премия по физике дважды присуждалась за исследование квантового эффекта Холла. Первый раз это была премия, присужденная профессору Марбургского университета (Германия, Гессен) Клаусу фон Клитцингу в 1985 году за открытие квантового эффекта Холла, и второй раз премией были удостоены в 1998 году профессор Стенфордского университета Роберт Лафлин (за интерпретацию дробного квантового эффект Холлла), профессор Колумбийского университета Хорст Штермер и профессор Принстонского университета Даниель Цуи (за открытие и основополагающие работы по дробному квантовому эффекту Холла). Интересно отметить, что открытие квантового эффекта Холла и дробного квантового эффекта Холла состоялось почти одновременно и все основные результаты были опубликованы за весьма короткий период с 1980 по 1983 год. Однако потребовалось еще несколько лет для признания всей важности квантового эффекта Холла и больше 15 лет для того, чтобы разобраться в физической сущности дробного квантового эффекта Холла.

В 1879 году американский физик Эдвин Холл провел эксперимент, пропустив магнитный поток через тонкую пластину из золота. В ходе эксперимента он обнаружил возникновение на краях пластины разности потенциалов, образовался эффект Холла.

Что такое эффект Холла

Если поместить в магнитное поле пластину-проводник или полупроводник под 90° к направлению силовых линий магнитного потока, электроны в пластине под действием силы Лоренца начнут смещаться по поперечине этой пластины. Направление смещения электронов зависит от направления силы тока и направления силовых линий магнитного потока. Иносказательно эффект Холла (ЭХ) – это частный случай действия силы Лоренца, то есть действия магнитного поля на заряженную частицу.

Вот как это выглядит простейшим образом на примере. Представьте, что пластина расположена к нам торцом, а ее кромка смотрит вниз. Эта пластина сделана из металла, оба ее торца подключены к источнику питания, задний торец на минус, передний на плюс.

В нашем воображаемом случае электрический ток будет двигаться по направлению к нам, то есть в нашу сторону, откуда мы наблюдаем. Справа и слева от пластины мы видим два магнита. Магнит справа обращен к пластине северным полюсом, а тот что слева обращен к пластине южным полюсом. Таким образом, в нашем случае силовые линии магнитного поля идут справа налево, поскольку всегда выходят из северного полюса и входят в южный. Силовые линии будут отклонять электроны, проходящие по пластине к ее верхней кромке.

Если мы поменяем направление тока в пластине, поменяв местами проводники, электроны начнут отклоняться вниз. Если мы не будем менять направление электрического тока, а поменяем полюса магнитов, электроны будут сдвигаться вниз. А поменять и то, и другое, сила Лоренца будет перемещать электроны вверх.

Итак, становится видно, что на одной из кромок нашей пластины под действием силы Лоренца копится отрицательный заряд, а на противоположной кромке – положительный. Наблюдается разность потенциалов между двумя кромками пластины, а другими словами – электрическое напряжение. Разность будет увеличиваться до тех пор, пока не уравновесит силу Лоренца. Разность потенциалов, возникающая конкретно в таких случаях, называется напряжением Холла и рассчитывается по формуле:

UХолл=−IB/et

Где I – сила тока, B – вектор магнитной индукции, e – заряд электрона, p – количество электронов в единице объема, t – толщина пластины.

Аномальный ЭХ

Бывают случаи, когда ЭХ обнаруживается в пластине без пропускания через нее магнитного потока. Это может происходить только тогда, когда нарушается симметрия по отношению к обращению времени в системе. В частности, аномальный ЭХ способен проявляться в намагниченных материалах.

Квантовый ЭХ

В двумерных газах, у которых среднее расстояние между частицами уменьшено до соизмеримых с длиной де Бройля на зависимости поперечного сопротивления к воздействию магнитного поля возникают плато сопротивления в поперечине. ЭХ квантуется только в сильных магнитных полях.

В магнитных потоках с еще большей силой индукции обнаруживается дробный квантовый ЭХ. Он взаимосвязан с перестроением внутренней структуры двумерной электронной жидкости.

Спиновый ЭХ

СЭХ можно наблюдать на не намагниченных проводниках, не помещенных в поле действия силовых линий магнита. Эффект заключается в отклонении электронов с антипараллельными спинами к противоположным краям пластины.

Применения

Эффект холла применяется для изучения особенностей полупроводников. С помощью него можно вычислить количество носителей заряда на единицу объема, а также их подвижность. В частности, пользуясь эффектом Холла можно отличить электрон от квазичастицы с положительным зарядом.

ЭХ послужил фундаментом для разработки датчиков Холла. Эта аппаратура измеряет напряженность магнитного поля. Такие датчики активно применяются для построения моторов со следящим приводом. В них они исполняют роль датчика обратной связи. Они измеряют угол поворота вала мотора.

Также устанавливаются в электростартерах ДВС, охлаждающие системы ПК, навигационных системах мобильных телефонов, применяются в измерительных приборах для вычисления количества заряда.